by Bob Boyce » Sat Jun 10, 2006 2:14 pm
When I discovered the resonance reaction, I was running a pair of small water-jet powered race boats off of hydroxy on demand systems. Both boats had identical systems, which were comprised of 2 pairs of 6-cell stacks. Both used a pair of dedicated propane carbs with 1" vapor fuel lines coming from the bubblers.
Each cell in the stack was 4 parallel cells containing 3 cathode plates and 2 anode plates, with 1/8" (3 mm) spacing. The cell stacks were 18" square, so plate surface are for these was massive. It was essentially a brute force system, although I was taking advantage of the series cell and the efficiency boost of the catalytic electrolyte. I had discovered this design in my attempts to improve efficiency of the basic electrolyser, and it turned out to be much more efficient than the electrolysers of the day in all of the literature I could find in the libraries.
I had modified the battery system to use marine deep cycle batteries, with a heavy solenoid to engage and disengage power to each unit. Power draw for each on a full charge was about 350 amps at the 12 volts. Battery run time needed was only in the minutes, so I just changed batteries before each heat, and kept batteries on charge during the event.
The resonance effect happened when the alternator on one of these marine engines failed (rectifier shorted),and superimposed an AC waveform onto the DC power bus. The effect was limited to a particular RPM range, and was as if someone kicked in an afterburner, it made such a difference in engine horsepower. After identifying the cause of this unusual burst of horsepower, I set out to find ways to intentionally create this reaction. The rest is history as they say.
The auto engine I ran was using a 60 series cell unit operating from a resonance generator and driver. At resonance, it took about 55-60 watts to generate enough hydroxy gas to just idle the engine, and about 160 watts to run the engine where the speedometer read 60 MPH in gear. This was with the car rear end up on jack stands, so no vehicle load at all on the engine. The engine was a chrysler 170 CID slant six (inline 6 cylinder) lean burn system with a carb and a distributor type ignition. I used a propane adapter plate on that engine to adapt it to vapor fuel.
In answer to the question on gas volume, yes, the volume increased dramatically during resonance, while current draw went way down. I think the limiting factor on those early 60 cell designs was the amount of gas that could evolve out of solution and come out of the chamber given the plate area being blocked by the bubbles. It was as if the water was boiling during resonance, and the bubbles came out of solution, not just at the plate surfaces. I endeavored to find solutions to stabilize and further improve reaction efficiency. Unfortunately, I was unable to continue my research after it was so rudely interrupted.
Bob